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Abstract.  Well-known concepts in statistical inference and sampling theory are used to 

develop recommendations for planning and analyzing the results of quantitative surveys of 

freshwater mollusks.  Two methods of inference commonly used in survey sampling (design-

based and model-based) are described and illustrated using examples relevant in surveys of 

freshwater mollusks.  The particular objectives of a survey and the type of information observed 

in each unit of sampling can be used to help select the sampling design and the method of 

inference.  For example, the mean density of a sparsely distributed population of mollusks can be 

estimated with higher precision by using model-based inference or by using design-based 

inference with adaptive cluster sampling than by using design-based inference with conventional 

sampling.  More experience with quantitative surveys of natural freshwater mollusk assemblages 

is needed to determine the actual benefits of different sampling designs and inferential 

procedures. 
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Surveys of assemblages of freshwater mollusks are undertaken for many reasons.  

Estimation of the composition and number of species is often the primary objective of faunal 

surveys (Watters 1992).  In ecological surveys, mollusks and their environment are typically 

sampled to examine associations between the 2.  For example, ecological surveys are used to 

identify mussel habitat and to detect temporal or spatial trends in mussel density with respect to 

environmental gradients (Strayer and Ralley 1993, Layzer and Madison 1995).  The detection of 

temporal trends is particularly important in longitudinal studies of the sensitivity of mollusks to 

various forms of environmental degradation, such as loss of habitat or reduction in water quality.  

Collection methods and sampling designs used in surveys of freshwater mollusks vary; 

however, malacologists distinguish their approaches to sampling as either qualitative or 

quantitative.  In qualitative surveys, visual or tactile searches for mollusks at or near the 

sediment surface are completed while wading or diving (using snorkel or SCUBA).  The 

searches may be timed (all mollusks encountered within a fixed period of time are included in a 

sample) or based on a fixed count of animals (search continues for an unspecified duration until a 

fixed number of mollusks is encountered).  Timed searches produce observations of catch per 

unit of effort (CPUE), the number of mollusks encountered in the search divided by the search 

time.  Fixed-count searches, which are used primarily in faunal surveys (Barbour and Gerritsen 

1996, Courtemanch 1996, Vinson and Hawkins 1996), identify the cumulative number of species 

included among all mollusks encountered in the search.  Quantitative sampling differs from 

qualitative sampling primarily in the unit of sampling.  Units of quantitative samples are 

obtained by dividing the entire area to be sampled into non-overlapping subareas.  This 

procedure is often assisted by physical survey instruments, such as rectangular quadrats or 

transect lines.  Mollusks within sample units are detected by searching (visual or tactile) the 
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sediment surface or, more commonly, by excavating the sediment to a prescribed depth and 

passing mollusks and sediment through sieves to help separate animals from particles of 

sediment.  Therefore, each unit in a quantitative sample contains an observed density of 

mollusks, which equals the number of mollusks divided by the surface area of the unit. 

Hornbach and Deneka (1996), Strayer et al. (1997), and Vaughn et al. (1997) recently 

identified various strengths and weaknesses of qualitative and quantitative sampling by 

comparing mussels collected with both timed searches and quadrats at identical locations.  

Estimates of species richness and diversity did not vary with method of collection when 

sufficient effort was used to collect similar numbers of mussels; however, the composition and 

relative abundances of species differed significantly with collection method.  Mussels that were 

small, smooth-shelled, or deeply buried were difficult to locate or to distinguish from sediments 

in the visual or tactile searches.  Consequently these mussels either were missed completely or 

were undersampled relative to the mussels collected in excavated quadrats.  Large mussels with 

highly sculptured shells, on the other hand, tended to be oversampled relative to the mussels 

collected in quadrats.  Another shortcoming of timed searches is that search efficiency may vary 

with observer, because of differences in training or fatigue, or with physical conditions at the 

study site, such as fallen logs, dense vegetation, or poor water clarity, which impede the search 

effort (Strayer et al. 1997).  Miller and Payne (1993) compared mussels located by another form 

of qualitative sampling, fixed-count searches, with mussels found in quadrats at the same study 

sites.  As with timed searches, estimates of species richness and diversity were similar in samples 

collected by either method, and several species of mussels were either undersampled or 

oversampled in the fixed-count searches relative to the quadrats.  The differences were attributed 

to the same kinds of species-specific differences in detection that occurred with timed searches. 
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Quantitative sampling that includes excavation and sieving of sediments appears to be an 

effective but costly (in terms of time and effort) method of collecting freshwater mollusks.  The 

primary advantages are significant improvements in detection of individuals and elimination of 

errors caused by variations in search efficiency.  Quantitative sampling also exploits the 

relatively sedentary nature of freshwater mollusks.  Although some mollusks are capable of 

limited horizontal movements, animals are unlikely to move beyond the region of sampling 

during the time required to complete a typical survey.  Therefore, the statistical population may 

be defined in terms of a region of interest that is subdivided into non-overlapping, spatial units of 

sampling.  Spatial definitions are useful in faunal surveys designed to estimate species richness 

because the estimated number of species is referenced to a finite region of measurable area.  The 

importance of relating species richness to area is well known (Connor and McCoy 1979). 

Despite the advantages of quantitative sampling methods, their relatively high cost has 

discouraged their use in surveys of mollusks.  Qualitative searches generally reveal a much 

higher number of individuals than quadrat samples taken in the same amount of time and are 

therefore more likely to encounter rare species when sample size is limited by search time.  

Consequently, Miller and Payne (1988, 1993) recommended qualitative sampling for estimation 

of community-level features, such as richness or diversity of species, and quantitative sampling 

for estimation of mussel density, size composition, and recruitment. 

A conceptual framework is clearly needed to help develop recommendations for planning 

and implementing surveys of natural mollusk assemblages.  In this paper I use well-known 

concepts in statistical inference and sampling theory to develop recommendations for designing 

quantitative surveys of freshwater mollusks and their environment.  I begin with a general 

introduction of the 2 philosophically distinct forms of statistical inference commonly used in 
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survey sampling (design-based and model-based).  More detailed descriptions of these 2 

approaches follow, drawing on examples that are relevant in surveys of freshwater mollusks.  I 

conclude with a list of recommendations for surveys of different objectives. 

 

Statistical inference in survey sampling 

Design-based and model-based approaches to inference are generally described in textbooks 

of survey sampling (Hedayat and Sinha 1991, Thompson 1992), but 1 is often emphasized in 

favor of the other because of differences in authors’ perceptions of the relative strengths and 

weaknesses of the 2 approaches (Cassel et al. 1977, Särndal 1978, Hansen et al. 1983).  Here, I 

discuss the 2 approaches in the context of their applicability to surveys of freshwater mollusks.  

My notation follows that of Thompson and Seber (1996). 

Suppose the statistical population is composed of N individual units.  In surveys of mollusks 

N might be the total number of quadrats or strip transects needed to define the region being 

surveyed.  Each unit is distinct and can be identified by a label, say i, where { }Ni ,...,2,1∈ .  

Associated with the ith unit is an observable characteristic or measurement iy , which, for 

example, might be the number of mollusks per quadrat.  In survey sampling we are interested in 

making an inference about the population of y-values, summarized by the vector ( )TNyy ,...,1=y .  

Inferences are made from information contained in a sample of n (< N) units of the population.  

The sample is represented by an ordered sequence of unit labels ( )nO iis ,...,1= .  The sample data 

Od  comprise both the y-values and the labels of the sample units; therefore, Od  is represented by 

the following sequence of ordered pairs:  ( ) ( ) ( )( )
niniiO yiyiyid ,,...,,,,

21 21= .  To avoid double 

subscripts, a useful shorthand notation for this sequence is ( )OOO sd y,= , where Oy  represents 
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the sample y-values associated with the ordered sequence of unit labels.  In descriptions of 

model-based inference, it is also useful to consider the sample y-values associated with a reduced 

set of unit labels that are distinct and uniquely ordered from smallest to largest label.  Denote this 

set and its corresponding y-values as s and sy , respectively.  All the information in Od  is 

contained in the pair ( )sOs y,  (Thompson and Seber 1996); therefore, an equivalent definition of 

the sample data is ( )sOO sd y,= . 

Given this notation, we now introduce the differences between design-based inference and 

model-based inference.  In the design-based view the population y-values are regarded as a fixed 

set of unknown constants, say y=θ .  Consequently, any parameter defined as a function of y is 

also regarded as a fixed constant.  The population mean, defined as ∑
=

=
N

i
iy

N 1

1µ , is a common 

example.  In contrast to this approach, model-based inference considers y to be a single 

realization of 1 or more stochastic processes.  The vector y is modeled in terms of a random 

vector ( )TNYY ,...,1=Y , whose joint distribution ( )θ;yYf  is characterized by 1 or more unknown, 

fixed parameters θ .  In the model-based view the observable population mean, like y, is a 

chance outcome; therefore the population mean is formulated as a random variable ∑
=

=
N

i
iY

N 1

1µ .  

Let )(µfE  denote the value of µ  that is expected under the model ( )θ;yYf .  The subscript on 

the )(⋅E operator emphasizes that the expectation is taken with respect to the model that is 

assumed to have generated y, the particular realization of Y.  For many models )(µfE  is a 

simple function of one or more model parameters (e.g., θµ =)(fE  for scalar θ ), and inferences 

about model parameters provide inferences about the population meanµ . 
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To illustrate the difference between design-based inference and model-based inference, 

consider a population of N = 100 coins that is found on the ground with only 1 side (heads or 

tails) visible.  Suppose 55 heads and 45 tails are visible among the 100 coins.  If we let y = 1 for 

each head and y = 0 for each tail, then in the design-based view the proportion of heads in the 

population is a fixed constant, which equals the population mean 

( )( ) ( )( )[ ] 55.0100045155 =+=µ .  The goal of design-based inference is to estimate this fixed 

constant from a sample of n coins.  In model-based inference the observed set of y-values is 

assumed to be a random outcome of 1 or more underlying processes.  As an example, suppose 

we assume that N independent coin tosses have produced the observed numbers of heads and 

tails in the population.  Given this assumption, each y-value is modeled as a random outcome of 

a Bernoulli process, which has the discrete density function ( ) ( )( )yy
Y yf −−= 11; πππ .  The 

unknown parameter π  of the Bernoulli distribution corresponds to the probability that each 

tossed coin has landed heads side up.  Under the Bernoulli model, ( ) πµ ==




 ∑

=
f

N

i
if EY

N
E

1

1
 

and inferences about π  and µ  are equivalent.  The goal of model-based inference is to estimate 

the fixed parameterπ from a sample of n coins. 

The design-based and model-based approaches have somewhat different reference 

populations.  In the former the scope of inference is limited to the surveyed population.  Model-

based inference, on the other hand, applies to a broader set of populations whose observable 

characteristics are statistically similar to the surveyed population.  The model-based approach is 

sometimes called a superpopulation view because the surveyed population is regarded as only 1 

of several possible finite populations that could have been encountered.  The advantages and 

shortcomings of the 2 approaches are described in the following sections. 
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Design-based inference 

In this view of survey sampling, the observable characteristics of a population, such as y 

orµ , are regarded as fixed constants.  Not surprisingly, the choice of sampling design is often 

motivated by differences in y-values anticipated from previous experience.  Spatial stratification 

(shoal vs. channel) and clustering (bedding) are typical examples in surveys of freshwater 

mussels.  The idea is to choose a sampling design that will improve the precision of parameter 

estimates if differences in y-values anticipated in the population are actually realized in the 

sample. 

The sampling designs most commonly used may be classified as conventional or adaptive 

(Thompson and Seber 1996).  In a conventional design the method of sample selection does not 

depend on any of the observed y-values in the population; therefore, all units included in a 

sample can be selected prior to the survey.  Examples include simple random sampling, stratified 

random sampling, and cluster sampling. Suppose we represent a sampling design mathematically 

as the conditional probability ( )y;OsP  of drawing a sample Os , given the population vector y.  In 

a conventional design ( ) ( )OO sPsP =y;  because the sample is selected independent of y.  

Unequal-probability designs, including those in which sample units are selected using auxiliary 

information known in advance of the survey (e.g., physical size of units), also are conventional. 

 In an adaptive sampling design, sample selection is based on the sequence of y-values 

observed in the sample sy , and units are selected for inclusion in Os during the survey.  

Examples of adaptive designs are simple random sampling with a sequential stopping rule and 

adaptive cluster sampling.  Adaptive designs are distinguished mathematically as those in which 

( ) ( )sOO sPsP yy ;; = . 
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Textbooks of survey sampling, such as Levy and Lemeshow (1991) and Thompson (1992), 

describe the practical details of implementing conventional or adaptive designs in surveys.  The 

details include step-by-step procedures for selecting samples and formulas for computing 

estimates of common population parameters and their variances. 

A distinguishing feature of design-based inference is that the estimators (= formulas) used to 

compute estimates of population parameters, such as µ , are closely linked to the sampling 

design.  A sampling design specifies the method of randomization used to select individual units 

of the population; therefore, the design induces a probability of selecting one sample over 

another.  An estimator of a population parameter commonly is derived to ensure that the 

estimator’s expected value, taken over all possible samples that might be selected under the 

design, exactly equals the value of the population parameter.  Such estimators are said to be 

design-unbiased for the parameter.  An example is ∑
∈

=
Osi

iy
n

1µ̂ , the estimator of the population 

mean µ  based on simple random sampling.  It is easily shown that µµ =)ˆ(PE , where the 

subscript on the )(⋅E  operator emphasizes that the expectation is taken with respect to all samples 

that can be selected under the design ( )y;OsP .  The estimator µ̂  is said to be design-unbiased 

forµ . 

Some estimators used in design-based inference are biased.  For example, ratio estimators of 

the mean, which are intended to exploit an underlying association between the population’s y-

values and 1 or more auxiliary variables, are biased forµ  under simple random sampling and 

unequal probability designs (Thompson 1992).  However, many commonly used estimators of 

population means and totals, which often are the parameters of interest in surveys of mollusks, 

are design-unbiased. 
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An important consequence of the linkage between sampling and estimation in design-based 

inference is that the estimators are unbiased, regardless of the nature of the population.  No 

assumptions about the vector y are needed to guarantee the unbiasedness of the estimators.  This 

situation is very different from the assumptions used to derive model-based estimators (see 

below). 

For design-unbiased estimators of µ , inference is commonly based on a version of the 

Central Limit Theorem that applies to simple random samples selected without replacement from 

finite populations (Thompson 1992).  According to this theorem, the distribution of 

( ) ( )µµµ ˆarv̂ˆ − , where µ̂  and ( )µ̂arv̂  are unbiased estimates of the population mean and of the 

variance of the sample mean, respectively, approaches the standard normal distribution as the 

numbers of observed (n) and unobserved ( )nN −  units become large.  In other words, the 

theorem states that the sampling distribution of the estimate is approximately normal, 

irrespective of the population y-values, if the population mean is estimated from a sufficiently 

large sample taken from a sufficiently large population.  This finite-population version of the 

Central Limit Theorem applies strictly to simple random samples, but the normal approximation 

is often used to make inferences in surveys that involve more complicated designs and estimators 

(Levy and Lemeshow 1991). 

The assurance of unbiasedness and of approximate, large-sample normality of design-based 

estimators is the principal advantage (and attraction) of design-based inference.  It is comforting 

to know that the design-based approach may be used for any population of y-values when little or 

nothing is known about a population prior to completing a survey. 

Design-based estimators have been used only recently in quantitative surveys of freshwater 

mollusks and with mixed results.  Strayer et al. (1996, 1997) used adaptive cluster sampling to 
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compare differences in density of mussels in 13 North American streams.  Mussel density was 

estimated with low precision for all but the most abundant species, even though 30-100 random 

quadrats were deployed initially at each site and supplemented with additional quadrats to satisfy 

the requirements of the adaptive design.  Other studies are needed to evaluate designs that may 

lead to improvements in precision, but the results of Strayer’s studies illustrate an important 

shortcoming of design-based inference.  For many types of observations, such as counts of 

sparsely distributed mollusks, the design-unbiased estimates of population parameters may lack 

precision, irrespective of the type of design (conventional or adaptive).  Furthermore, the number 

of units sampled from these populations may need to be very large before approximate 

normality, guaranteed by the Central Limit Theorem, is actually achieved.  For example, 

consider a hypothetical population of rare mollusks that is randomly distributed along a stream 

bottom with a mean density of 0.01 mollusks/m2.  Complete spatial randomness implies that the 

number of mollusks observed in a 1-m2 quadrat is expected to have a Poisson distribution with 

mean 0.01.  Now suppose the mollusks in n = 200 randomly selected quadrats are counted to 

estimate the mean density of the population.  A sum of independent Poisson random variables is 

also Poisson; therefore, the number of mollusks in 200 quadrats is expected to have a Poisson 

distribution with mean 2.0, which is still highly nonnormal (Jolliffe 1995).  Many more quadrats 

are required for the sampling distribution of the mean density to approximate normality.  This 

hypothetical example is admittedly contrived, but it makes the point that in some populations the 

advantages of design-based inference may only be realized with infeasibly large samples.  If the 

number of units included in a sample is necessarily limited, which is often the case in surveys of 

mollusks, other approaches may be needed to make inferences from survey data.  An alternative 

approach that is often useful in small samples is model-based inference. 
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Model-based inference 

In this view of survey sampling, the population vector y is considered to be a realization of 1 

or more stochastic processes and is therefore modeled as a random vector Y.  A family of density 

functions ( ){ }Θ∈θθ :;yYf , characterized by 1 or more unknown parameters θ  in the parameter 

space Θ , is used to approximate the joint distribution of Y.  The density functions may be 

discrete or continuous, depending on the nature of the y-values in the population. 

Any dependence between sample selection and y is specified in the conditional probability 

( )y;OsP  induced by the sampling design.  Because y is not fixed in the model-based view, the 

sample itself can be regarded a chance outcome of the underlying processes assumed to have 

produced y, provided, of course, that y is used to select Os  in the design.  Therefore, it is 

possible to model the joint distribution of Y and OS , a random variable used to indicate a 

sequence of ordered units in the sample, in terms of the probability density function 

 

 ( ) ( ) ( )θθ ;;;,, yyy YY fsPsf OOSO
⋅=  

 

(Thompson and Seber 1996).  However, for conventional and adaptive designs, ( )y;OsP  can 

depend on y only through sy , the vector of y-values observed in the sample.  Therefore, the joint 

density of the data ( )sOO sd y,=  observed under these designs may be modeled as follows: 

 

( ) ( ) ( )θθ ;;;, sssOsOD fsPsf
O

yyy ⋅= , 
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where ( )θ;ssf y  is the marginal density of sy .  For other sampling designs, which are called 

nonstandard by Thompson and Seber (1996), selection of sample units may depend on 

unobserved y-values in the population or on assumed, but unknown, values of model parameters.  

Nonstandard designs can lead to complicated density functions and are not considered further 

(see Thompson and Seber 1996 for additional references). 

Estimation of the unknown parameters θ  is a common objective in model-based inference.  

Given a well-fitting model, estimates of θ  are used to make conclusions about the entire 

population of y-values, including those not observed in the sample.  In model-based inference, θ  

and other population parameters are often estimated by the method of maximum likelihood 

(Mood et al. 1974), which defines the value of θ  that is most likely, given the data and the 

model, as the maximum-likelihood estimate θ̂ .  It is computed by maximizing the likelihood 

function ( )OdL ;θ , which equals the joint density of the n random variables observed in the 

sample Os : 

 

 ( ) ( ) ( )θθ ;;; sssOO fsPdL yy ⋅= . 

 

In this equation notice that ( )OdL ;θ  is a function of θ  for the realized set of data 

( )( )sOO sd y,= .  This notation emphasizes that once the sample is selected the data are regarded 

as fixed and that different parameter values provide different levels of support for the y-values in 

the sample.  The greatest level of support is provided by θ̂ . 

This method of estimation highlights an important difference between design-based and 

model-based approaches.  In the former, estimators of population parameters are closely linked 
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to sampling design.  In the latter, estimation is based on the likelihood function, which is 

invariant to conventional and adaptive sampling designs because the sample selection 

probabilities ( )sOsP y;  convey no information about θ .  Sampling design is also irrelevant in 

likelihood-based procedures for testing hypotheses.  Once a sample of units thought to be 

representative of the population is obtained using a particular conventional or adaptive design, 

the probabilities of sample selection become irrelevant in matters of inference.  This statement is 

easily proved with an example.  Suppose some data Od  are collected with a particular 

(conventional or adaptive) design to test the null hypothesis H0 that the model parameters equal a 

particular value 0θ  (i.e., H0: 0θθ = ).  The data in the sample may either support or contradict H0.  

The decision to accept or reject H0 is made by comparing the likelihood that 0θθ =  with the 

likelihood that θθ ˆ= .  These likelihoods are represented mathematically as 

 

( ) ( ) ( )00 ;;; θθ sssOO fsPdL yy ⋅=  

and 

( ) ( ) ( )θθ ˆ;;;ˆ sssOO fsPdL yy ⋅= , 

 

respectively.  A formal comparison of the 2 likelihoods is made with a likelihood-ratio test 

statistic (Mood et al. 1974), which is computed as follows: 

 

 ( ) ( )
( ) 











−=
O

O
O

dL

dL
dW

;ˆ
;

log2 0

θ
θ
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( ) ( )
( ) ( ) 







⋅
⋅−=

θ
θ
ˆ;;

;;
log2 0

sssO

sssO

fsP

fsP

yy

yy
 

 

 
( )
( ) 







−=
θ
θ
ˆ;

;
log2 0

ss

ss

f

f

y

y
. 

 

If H0 is correct and the statistical model satisfies the usual regularity conditions (Azzalini 1996), 

the distribution of ( )OdW  converges to a chi-squared distribution as the number of units in the 

sample increases.  The degrees of freedom of the chi-squared distribution equal the difference in 

degrees of freedom of null and alternative models; therefore, in sufficiently large samples H0 is 

rejected if ( )OdW  exceeds a pre-determined critical value of the chi-squared distribution.  The 

important thing to notice in this example is that the probabilities of sample selection induced by 

the sampling design are irrelevant in the test of H0 because ( )OdW  does not depend on ( )sOsP y; . 

Model-based estimators and inferential procedures offer many advantages in the analysis 

and design of surveys.  By taking the model-based view that y is a single realization of 1 or more 

stochastic processes, a researcher has considerable flexibility in identifying and selecting classes 

of models for approximating the true, underlying processes believed to have generated y.  Model 

specification may be guided initially by the nature of the observable y-values in the population.  

For example, consider surveys undertaken to estimate the density of mollusk species from a 

sample of quadrats.  The number of mollusks of each species is observed in each quadrat, and y-

values are often dominated by counts of 0, 1, or 2 mollusks per quadrat (Green and Young 1993, 

Strayer and Ralley 1993).  Such observations are consequences of using relatively small units 

(0.25 - 1.0 m2 /quadrat) to sample an assemblage of sparsely distributed animals.  In these cases 
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the sampling distribution of the mean density of mollusks (no./m2) is almost certainly 

nonnormal, given the small number of quadrats typically used in surveys of freshwater mollusks.  

It makes more sense, at least initially, to regard the counts of mollusks observed in such surveys 

as independent outcomes of a Poisson process. 

It is not always easy to find a model that adequately fits the data in surveys of freshwater 

mollusks.  Simple density functions, such as the 1-parameter Poisson, are unsatisfactory when 

goodness-of-fit statistics reveal that the observed variation in the data exceeds that which is 

expected under the model.  This excess variation or overdispersion is often attributed to spatial 

clustering or aggregation of mollusks in freshwater assemblages (Elliott 1977).  If overdispersion 

is detected, alternative classes of models must be considered to reallocate the excess variation 

among systematic and random components of a model.  An example is the negative binomial, 

which can be derived by mixing the Poisson and gamma density functions (Mood et al. 1974).  

The resulting mixture is a 2-parameter density function that consigns more of the variation in y-

values to random error and less to the systematic components of the model.  Accommodating 

overdispersion in this manner is generally successful when data contain modest levels of 

overdispersion.  Fortunately, the excess variation in mussel counts that is assumed to be induced 

by spatial aggregation appears to be low in many natural populations of these animals  (Downing 

and Downing 1992, Strayer et al. 1997). 

Another option for dealing with overdispersion is to model the y-values in terms of auxiliary 

information that is measured in the sample and thought to be important in predicting y.  Here, the 

mean response (or a 1:1 function of the mean response) is specified as a function of predictor 

variables.  For example, the logarithm of the mean density of mollusks can be expressed as a 

linear function of habitat-related measurements in a Poisson regression model.  In this way the 1-
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parameter Poisson is extended to a family of density functions, providing a framework for 

exploring relationships between features of mollusk assemblages and their environment.  Poisson 

regression models are included in a larger class of generalized linear models (McCullagh and 

Nelder 1989), which have a common systematic component (a linear combination of parameters 

involving predictor variables) but different random components for specifying different forms of 

error.  The random components of generalized linear models comprise the Bernoulli, binomial, 

Poisson, gamma, normal, and inverse Gaussian density functions; therefore, these models may be 

widely applicable in analyses of data collected in surveys of freshwater mollusks. 

The model-based approach to estimation and inference has an important shortcoming.  If the 

model of the data is not correct, estimates of population parameters and their variances may be 

biased.  This criticism, though technically correct and often cited by advocates of the design-

based view, fails to recognize that models are only intended to be approximations of truth that 

contain both errors of approximation (bias) and errors of estimation (variability).  The model-

based approach does not seek the true or correct model of the data, only a model that is 

supported by the level of information contained in the data.  To be useful in matters of inference, 

models should provide a parsimonious balance between errors of approximation and errors of 

estimation (Linhart and Zucchini 1986), not an overfitting of the data that is unlikely to 

approximate novel observations made in other samples or in other populations. 

The contrasting opinions of design-based and model-based advocates can be traced to 

inherent differences in the statistical foundations of the 2 approaches.  Advocates of the design-

based view adopt a frequentist approach to inference, which emphasizes the performance of an 

estimator or inferential procedure in hypothetically repeated samples of the population and which 

highly values the property of unbiasedness.  In contrast, proponents of the model-based view 
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develop estimators and make inferences based on the likelihood principle (Berger and Wolpert 

1984), which requires all evidentiary conclusions about the population to be based on the data 

observed in the sample.  Average performance of an estimator in hypothetically repeated samples 

is irrelevant in likelihood-based inference (Berger and Wolpert 1984, Edwards 1992). 

 

Design-based vs. model-based inference: an example with sparsely distributed mussels 

An example with 2 hypothetical populations of sparsely distributed mussels illustrates some 

of the differences that may result from applications of design-based and model-based inference.  

Suppose a survey is undertaken to test whether 2 stream reaches of equal area (100 m long by 20 

m wide) contain the same density (no./m2) of a rare mussel species.  In 1 reach the locations of 

200 mussels were generated as a realization of a Poisson cluster process (Cressie 1993) 

parameterized by an average of 20 parent locations and an average radius of dispersion of 2 m 

between parents and offspring (Fig. 1A).  The realized mean density of mussels in this reach was 

0.1 mussels/m2 (= 200/2000).  In the 2nd reach the locations of 100 mussels were generated 

similarly except that the average number of parent locations was reduced to 10 to produce the 

same average level of small-scale variation (10 offspring/parent) as in the 1st reach (Fig. 1B).  In 

the 2nd reach the realized mean density of mussels was 0.05 mussels/m2 (= 100/2000).  The 

densities of mussels in these 2 reaches are in the range of densities estimated for threatened and 

endangered species of unionids (Strayer et al. 1996). 

Each reach was partitioned for sampling into 2000 square (1 m x 1 m) quadrats.  This 

procedure resulted in sample units that primarily contained 0, 1, or 2 mussels each, similar to the 

counts observed in quadrat samples of natural mussel populations (Green and Young 1993, 

Strayer and Ralley 1993).  Two sampling designs were used to compare the density of mussels in 
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the 2 reaches.  The 1st was simple random sampling in which 20, 40, 80, 160, or 320 quadrats 

were randomly selected from each reach.  Although commonly used, simple random samples can 

be impractical in some streams where it is difficult or expensive to relocate people and 

equipment to different quadrats that are randomly selected but spaced far apart.  A 2-stage design 

was used to collect a random sample of quadrats from each simulated population as an 

alternative.  In this design, each reach 1st was divided into 100 transects that ran across the 

stream and therefore included 20 quadrats each.  In the 1st stage of sampling, 2, 4, 8, 16, or 32 

transects were randomly selected from each reach.  In the 2nd stage, 10 quadrats were randomly 

selected from each transect selected in the 1st stage, producing the same set of sample sizes 

obtained with the simple random sampling design but potentially at lower cost. 

The 2 approaches to inference were compared by drawing 5000 independent samples from 

each reach with simple random sampling or with 2-stage sampling.  Two criteria were used to 

compare the 2 approaches:  1) the statistical power to detect the 2-fold difference in density of 

mussels in the 2 reaches, and 2) the variance of the estimated mean density of mussels in each 

reach.  Procedures for estimating these criteria are summarized in the appendix. 

Model-based and design-based methods of inference provided estimates of mean mussel 

density with similar variances when quadrats were selected from the 2 reaches by simple random 

sampling (Table 1).  Estimates of the statistical power to detect the difference in mussel density 

in the 2 reaches also were similar between methods of inference (Fig. 2A).  However, power was 

relatively low (0.07 - 0.41) over the range of sample sizes used.  Different results were obtained 

when quadrats were selected from the 2 reaches by 2-stage sampling.  Model-based estimates of 

mean mussel density were much more precise than the design-based estimates (Table 2).  

Efficiencies of the model-based estimates relative to the design-based estimates were highest 
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(2.99 and 3.01) at the lowest sample size (20 quadrats) and declined with increases in sample 

size.  Surprisingly, higher precision of the model-based estimates of mean mussel density at low 

sample sizes was associated with only minor differences in the statistical power to detect the 2-

fold difference in density of mussels in the 2 reaches (Fig. 2B).  Apparently, the sampling 

distribution of the F statistic used in the model-based approach converged more slowly to its 

asymptotic distribution under H0 than the sampling distribution of the z statistic.  Although 

needed to ensure that model-based and design-based tests of H0 were compared at the same level 

of significance, higher variability of the F values simulated under H0 was associated with higher 

critical values of F, producing fewer rejections of H0 than would have occurred if critical values 

had been selected from the asymptotic distribution of F. 

This example illustrates that detection of differences in density of sparsely distributed 

mussels may be difficult unless samples include a large number of quadrats.  The statistical 

power of detection was relatively low in samples of 20-320 quadrats, regardless of sampling 

design (simple-random or 2-stage) or method of inference (model-based or design-based).  

Samples of <40 quadrats, though common in benthic surveys of macroinvertebrates (Downing 

and Downing 1992, Resh and McElravy 1993), were inadequate for detecting the 2-fold 

difference in density of mussels.  However, the precision of estimates of mean density was 

improved in small samples collected by 2-stage sampling when model-based estimators of mean 

density were used. 

Recommendations 

Estimation of mean density or abundance of mollusks 

Optimal choice of sampling design and method of inference depends on the particular 

objectives of a survey.  An estimate of the mean density of each species is all that is desired in 
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some surveys of freshwater mollusks.  In these surveys, the combination of conventional 

sampling designs and design-based estimators yields estimates that are free of bias but are almost 

surely imprecise for many species.  As described earlier, this result is a consequence of the 

relatively small size (<1 m2) of typical units of sampling and of the sparseness that is 

characteristic of the spatial distribution of many species.  In these surveys, model-based 

estimators can sometimes provide improvements in precision without requiring dramatic 

increases in sample size.  The key is to identify a model that adequately approximates the y-

values (i.e., counts) observed in the sample.  The Poisson density function should be tried 

initially.  If this model is inadequate, parameters may be added to model the extra-Poisson 

variation. 

Models also can be used to select sample size.  For example, Green and Young (1993) 

illustrated how the Poisson and negative binomial density functions may be used to compute the 

number of sample units needed to detect at least 1 animal in a survey, given prescribed levels of 

animal abundance and variation.  Jackson and Resh (1988, 1989) also used Poisson and negative 

binomial models to develop sequential sampling designs for assessing environmental impacts.  

They showed that the expected number of sample units required to detect prescribed differences 

in species richness, species diversity, or density (i.e., to detect an environmental impact) by 

sequential sampling was lower than the number of units required by conventional sampling 

designs. 

Adaptive cluster sampling designs and estimators would seem to be ideal for obtaining 

relatively precise estimates of mean densities of mollusk species because the method was 

developed for estimating the characteristics of rare, spatially clustered populations of plants and 

animals (Thompson and Seber 1996).  Adaptive cluster sampling has been used in only 1 survey 
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of freshwater mollusks (Strayer et al. 1996, 1997), in which mean density was estimated with 

low precision for all but the most abundant species.  Failure of the adaptive design to yield 

precise estimates of mollusk density in this instance should not vitiate the approach without 

further evaluation.  For example, a unit is added to an adaptive cluster sample only if the unit is 

physically adjacent to one that satisfies an arbitrary condition established in advance of the 

survey.  In a survey designed to estimate the mean density of all mollusks, the condition might 

be that the number of mollusks of all species exceeds some lower limit, say c; therefore, if 

mollusks are spatially clustered, the adaptive procedure selects units with greater numbers of 

mollusks more efficiently than simple random sampling.  The adaptive cluster design is 

intuitively appealing for the collection of rare animals, but additional research is needed to 

determine the best condition for extra sampling when estimates of mean density of more than 1 

species are required.  For example, in a survey of several species of mollusks an adaptive 

procedure may require extra sampling if 1) the number of mollusks of a particular species 

exceeds a lower limit c, 2) the number of mollusks of any 1 or more species exceeds c, 3) the 

number of mollusks of every species exceeds c, or 4) the total number of mollusks of all species 

exceeds c.  Other conditions for extra sampling are possible, of course.  Thompson and Seber 

(1996) have shown that design-unbiased estimators of mean density and estimators of their 

covariances exist regardless of the nature of the requirements for extra sampling.  However, 

malacologists must determine through experience the kinds of conditions for extra sampling that 

improve the precision of estimates of mean density for most, if not all, species encountered in the 

survey, including rare species that are often of greatest interest. 
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Detection of associations between mollusks and their environment 

Some surveys of freshwater mollusks are undertaken to determine whether the density or 

spatial distribution of mollusks is associated with physical or chemical features of their 

environment.  Sampling along an environmental gradient created by a point-source discharge of 

pollutants in a stream is an example.  Model-based inference can be especially helpful in both 

analysis and design of these surveys.  In terms of analysis, a likelihood-ratio comparison of 

models with and without environmental effects provides a direct test of the strength of 

association between mussels and their environment.  In terms of survey design, models may be 

used to select the number of sample units needed to detect a mollusk-environmental association 

with a prescribed level of statistical power.  It is important to remember, however, that the 

survey must still include a random selection of sample units.  Randomization helps to ensure that 

observations are statistically independent and that personal bias is avoided. 

Model-based inference is essential in 1 type of sampling design that has never been applied 

in a survey of freshwater mollusks but may be useful in quantifying the physical habitat of 

sparsely distributed species.  In this design the finite region of measurable area that defines the 

statistical population is not divided into discrete spatial units.  Instead the entire region is 

searched noting each of the spatial locations where a mollusk is found.  The observed set of 

locations is called a spatial point pattern (Cressie 1993) and may be regarded as a realization of 1 

or more spatial point processes.  For example, a homogeneous Poisson process corresponds to 

complete spatial randomness and is generally used as a null model in analyses of spatial point 

patterns.  Models of inhomogeneous Poisson processes may include spatially varying covariates 

and are used to specify spatial variation in mean density.  These models can be used to test 

whether spatial distributions of mollusks are correlated with the spatial distributions of 1 or more 
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habitat-related variables.  Spatial point patterns exploit the relatively sedentary nature of 

mollusks; however, they are not easily observed if visibility is poor or if detection of mollusks is 

otherwise impaired.  An obvious advantage of spatial point patterns is that they do not require 

the size, number, or location of sample units to be specified.  In addition, the potential covariates 

of a spatial point pattern do not have to be measured at every location where mollusks are found.  

Associations between the mean density of mollusks and 1 or more covariates can be tested using 

interpolated values of the covariates at the locations of the spatial point pattern (Rathbun 1996).  

Therefore, habitat-related variables may be measured at locations other than those occupied by 

mollusks, and analyses can still be completed to estimate the level of association between 

mollusk density and measures of habitat. 

Evaluation of survey design appears to be a fertile area for new research with freshwater 

mollusks.  The design-based and model-based approaches described in this paper are not new; 

however, they have been applied only recently in surveys of mollusks.  Rigorous assessments 

with natural assemblages of mollusks are needed to determine whether the potential benefits of 

these approaches can be realized in practice. 
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Appendix:  Simulation-based estimation of statistical power and variance 

Design-unbiased estimates of the mean density of mussels in the jth stream reach ( jµ̂ , j = 

1,2) and of the variance of this estimate ( )ˆar(v̂ jµ ) were computed in each sample to test the null 

hypothesis H0 of equal densities of mussels in the 2 reaches.  Tests of H0 were based on the test 

statistic 
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When samples contain a sufficiently large number of quadrats, the distribution of z approximates 

a standard normal distribution N(0,1) if H0 is true, allowing quantiles of N(0,1) to be used as 

critical values for testing H0.  However, not all samples selected from the 2 reaches were 

sufficiently large to satisfy the standard normal approximation; therefore, the sampling 

distribution of z under H0 was simulated by combining the units from both populations into 1 

population, drawing a sample of twice the required size from the combined units, and then 

randomly allocating the units in this combined sample into 2 samples of equal size.  This 

procedure was repeated 5000 times, computing z for each pair of samples.  The α/2 and 1-α/2 

quantiles of these z values (denoted z(α/2) and z(1-α/2), respectively) were used as critical values 

to test H0 at the α level of significance; therefore, H0 was rejected at the 0.05 significance level if 

z < z(0.025) or z > z(0.975).  The statistical power of detecting the difference in mean density of 

mussels in the 2 reaches was estimated as the proportion of the 5000 samples in which H0 was 

rejected.  The variance of the estimated mean density of mussels in each reach, )ˆvar( jµ , was 

estimated by averaging the variance estimates )ˆar(v̂ jµ  computed for each of the 5000 samples.  
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Because the entire population of y-values is known, )ˆvar( jµ  could have been computed exactly; 

however, sample estimates of this variance were averaged to provide a direct comparison with 

the average of the model-based variance estimates calculated for each sample.  By using 5000 

samples, the difference between )ˆvar( jµ  and the average of )ˆar(v̂ jµ  was negligible for all 

sample sizes examined. 

To apply model-based inference in the test of H0, the number of mussels per quadrat was 

modeled with a Poisson density function, modified for overdispersion.  Specifically, I assumed 

that ( ) jjif YE λ= , where jiY  denotes a random variable for the number of mussels in the ith 

quadrat (i = 1, …, jN ) of the jth reach (j = 1, 2) and ( )⋅fE  indicates expectation with respect to 

the Poisson model 
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To account for overdispersion, I assumed that the variance of jiY  expected under the model is 

( ) jjif Y λφ ⋅=var , where φ  is a positive constant to be estimated from the data.  Values of φ  that 

exceed unity indicate overdispersion, whereas 1=φ  indicates that the distribution of jiY  follows 

a regular Poisson density function.  Modeling overdispersion in this way is called quasi-

likelihood (McCullagh and Nelder 1989) and is often useful when the exact mechanism 

generating overdispersion is unknown. 

Given the overdispersed Poisson model, inferences about the mean density of mussels in the 

2 reaches are equivalent to inferences about the Poisson parameters jλ  because 
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densities of mussels in the 2 reaches can be restated in terms of the model’s parameters: 

H0: 21 λλ = . 

Each of the 5000 samples was used to test H0 by computing likelihood-based estimates of 

model parameters and test statistics.  The common Poisson mean λ , which parameterizes the 

distribution of jiY  under H0, was computed using the maximum-likelihood estimator 
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where jiy  is the number of mussels observed in the ith quadrat (i = 1, …, jn )  sampled from the 

jth reach.  Distinct Poisson means, which hold when H0 is false, were estimated by 
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Overdispersion in the mussel counts was estimated using the conventional quasi-likelihood 

estimator of φ  (McCullagh and Nelder 1989): 
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Tests of H0 were based on the statistic φ̂WF = , where W is the likelihood-ratio statistic 
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Under H0 the distributions of W and ( )2ˆ
21 −+⋅ nnφ  converge asymptotically to chi-squared 

distributions based on 1 and 221 −+ nn  degrees of freedom, respectively (McCullagh and 

Nelder 1989).  Therefore, when H0 is true and samples are sufficiently large, the test statistic 

φ̂WF =  approximates an F distribution parameterized by 1 and 221 −+ nn  degrees of 

freedom, and quantiles of ( )2,1 21 −+ nnF  may be used as critical values for testing H0.  

However, not all samples selected from the 2 reaches were sufficiently large to satisfy this 

approximation; therefore, the sampling distribution of F under H0 was simulated by drawing 

samples from the combined units of both populations as was done for z (see above).  The 1-α 

quantile of the simulated distribution of F values, denoted F(1-α), was used to test H0 at the α 

level of significance; therefore, H0 was rejected at the 0.05 significance level if F>F(0.95).  The 

statistical power of detecting the difference in mean density of mussels in the 2 reaches was 

estimated as the proportion of the 5000 samples in which H0 was rejected. 

The variance of the model-based estimates of mean density of mussels in each reach, 

( )jλ̂var , was estimated by averaging the variance estimates ( )jλ̂arv̂  computed for each of the 

5000 samples.  These variance estimates were based on the quasi-likelihood assumptions and 

were computed as follows:  ( ) jjj nλφλ ˆˆˆarv̂ ⋅= . 
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Table 1.  Variances of model-based and design-based estimates of mean density of mussels 

based on simple random samples of quadrats from each stream reach shown in Fig. 1.  Efficiency 

of the model-based estimator jλ̂  relative to the design-based estimator jµ̂  is indicated by the 

ratio of their variances:  eff( jλ̂ ) = ( ) ( )jj λµ ˆvarˆvar . 

 

No. quadrats ( )1̂var λ  ( )1ˆvar µ  eff( 1̂λ ) ( )2
ˆvar λ  ( )2ˆvar µ  eff( 2̂λ ) 

20 0.00648 0.00900 1.39 0.00379 0.00469 1.24 

40 0.00372 0.00439 1.18 0.00216 0.00237 1.10 

80 0.00210 0.00216 1.03 0.00112 0.00115 1.03 

160 0.00112 0.00103 0.92 0.00057 0.00055 0.96 

320 0.00057 0.00047 0.82 0.00029 0.00025 0.86 
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Table 2. Variances of model-based and design-based estimates of mean density of mussels based 

on 2-stage samples of quadrats from each stream reach shown in Fig. 1.  Efficiency of the model-

based estimator jλ̂  relative to the design-based estimator jµ̂  is indicated by the ratio of their 

variances:  eff( jλ̂ ) = ( ) ( )jj λµ ˆvarˆvar . 

 

No. quadrats ( )1̂var λ  ( )1ˆvar µ  eff( 1̂λ ) ( )2
ˆvar λ  ( )2ˆvar µ  eff( 2̂λ ) 

20 0.00529 0.01583 2.99 0.00322 0.00970 3.01 

40 0.00315 0.00774 2.46 0.00200 0.00513 2.57 

80 0.00188 0.00381 2.03 0.00110 0.00248 2.25 

160 0.00106 0.00176 1.66 0.00056 0.00112 2.00 

320 0.00056 0.00076 1.36 0.00029 0.00048 1.66 
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Figure Legends 

 

Fig. 1.  Simulated spatial distributions of a rare mussel species in 2 stream reaches of identical 

size and shape (plotted with a 1:1 aspect ratio).  Locations of mussels in each reach were 

generated as a realization of a Poisson cluster process (see text).  Each reach contains a different 

mean density of mussels:  0.1 mussels/m2 (A) and 0.05 mussels/m2 (B). 

 

Fig. 2.  Estimates of statistical power of detecting a difference in mean density of mussels (at 

05.0=α ) using samples selected from the 2 stream reaches shown in Fig. 1.  Quadrats were 

selected by simple random sampling (A) or by 2-stage sampling (B).  Symbols indicate whether 

power calculations were based on design-based inference (�) or model-based inference ( ���� 
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